

Building the UK a Competitive Advantage from the Shift to a Low Carbon Economy

Robert Evans, CEO, Cenex

Promoting Low Carbon Vehicles: Policy and Practical Action Waterfront Conferences, London, 7th November 2007

Scope of Presentation

- UK competitive advantage
- Cenex approach to assisting UK competitiveness
- Conclusions

UK Motor Industry Competitiveness

- 6.8% of UK Manufacturing Sector GDP, 3,500 companies, 198,000 employees
- Vehicle Production
 - > 40 Vehicle Manufacturers contributing £9.8b value-add
 - > 1.5million cars and > 200,000 commercial vehicles
- Engine Production
 - 3 million engines produced each year
- Components Sector
 - > 2,600 component manufacturers (including 19 of top 20 suppliers) producing total of £4.8b value-add
- Design Engineering
 - Employs 7,500, £650mpa turnover
- Motor Racing
 - 38,000 people employed, £4.6b of turnover
- Academic and Industry R&D
 - Heritage of > 100 collaborative Foresight Vehicle projects worth> £100m

Opportunities from the shift to a Low Carbon Economy

- Light weight Materials
 - Light weighting via composites
- Energy storage and release
 - Braking: batteries, supercapacitors, flywheels
 - Exhaust gas energy recovery
- Powertrain efficiency enhancement
 - Advanced engines, battery electric, hybrid and fuel cell powertrains
 - Energy efficient mechanical and electric drivelines
- Combustion and fuel processing systems enabling operation on renewable energy feedstocks
 - Green electricity
 - Hydrogen
 - Bio-fuels (liquid and gaseous)
 - Synthetic (Fischer-Tropsch) fuels

Challenges Faced by New Low Carbon Automotive Technologies

- Need help in critical exploitation (Valley of Death) phase between R&D and Deployment
- Limited early\niche markets for immature products
- Disruptive technologies not easily integrated into (risk averse) mature motor industry investment cycles
- Procedural barriers
- "Initial investment" challenge for supply chain and consumer\end users
- Customers need complete package (inc. refuelling infrastructure and after-sales support)
- Critical need for evidence of:
 - Performance capabilities of the key low carbon technologies
 - Supply chain capabilities
 - Market readiness
 - Business case (for suppliers and end users)

Background to Cenex

- UK's Centre of Excellence for Low Carbon and Fuel Cell Technologies to promote UK competitiveness
 - Recommendation of Automotive Innovation and Growth Team
 - Business case developed via LowCVP stakeholder engagement
 - Launched in 2005 as a BERR sponsored private partnership
 - Appointed manager of a Low Carbon and Fuel Cell Technology Knowledge Transfer Network
- Cenex strategic delivery via:
 - technology demonstrations
 - Innovation Orientated Procurement
 - Knowledge Transfer Network

Low Carbon and Fuel Cell Technology

Knowledge Transfer Network

Technology Demonstrations

- Help mobilise an effective UK located supply chain
- Provide means of technology and market evaluation (stimulate market)
- Act as flagship projects to showcase UK supply chain capabilities to the global motor industry

Electric Vehicles

- Smart ED Project
 - Field trial of 100 Smart 4,2 ed cars in the UK. If the trial is successful, providing evidence of a market at the right product price, Smart will launch an ed version of the next generation smart car
 - Cenex helped place vehicles with public and private sector fleet operators and will oversee field trial (qualitative as well as quantitative testing)
- Modec Dealer Network Support
 - Cenex providing leasing support package to enable set-up operations (vehicles and garaging equipment) at dealers with the aim of helping ensure triability of Modec vehicles
 - Cenex will work with project partners to accelerate setting of realistic industry view on EV Residual Values

Hybrids and Biofuels

- Hybrids
 - Working with the leading technology developers from the UK supply chain and a number of blue chip public and private sector fleet operators to formulate diesel electric hybrid demonstration projects for van, mini-bus and midi-bus applications
 - Projects will help illustrate the fuel (carbon) and lifecycle cost) savings potential of hybrids, which are very application (duty cycle) specific

- Biogas
 - Working with organisations investing in processing waste to integrate transport (natural gas and dual-fuel vehicles) into waste-to-energy projects

Hydrogen and Fuel Cells

cenex

- EnV Bike Certification
 - Using EnV bike as a test case for developing processes to secure vehicle certification needed to help overcome barriers to UK demonstrations of hydrogen vehicles

- Hydrogen Clusters Project
 - Project underway to integrate vehicle use into emerging regional hydrogen infrastructure development projects

Cenex and Innovation Orientated Procurement

- Low carbon vehicle options available today represent only a fraction of what supply chain could and will eventually deliver
- Clear gaps between what is available and what innovative fleet operators would like to trial prior to adoption
- Early evidence of organisations willing to trial emerging low carbon vehicles

 Cenex seeking to assist UK public and private sector fleet operators to make future demand visible via Innovation Orientated Procurement (IOP)

Cenex fits within UK policy framework designed to encourage progression from RD&D to Deployment

Knowledge Transfer Network

- KTN dedicated to Low Carbon and Fuel Cell Vehicles
 - With SMMT Foresight Vehicle, Fuel Cells UK and Fuel Cell Today
- Focus on accelerating knowledge
 transfer through networking
- Delivery via
 - Events, special interest communities
 - Easy to use information services (www.lowcarbonfuelcellktn.org.uk)
- Metrics
 - Lead (150 organisations actively engaged)
 - Lag (# of projects\collaborations created and Finance raised)

ategist - [Engine:	s & Powertrain	(Read Only)]									- 6
t Vew Iools W	(ndow Help										-
8 🗳 🖬 🖪	🍜 X 🗈 🖻	0 🖉 🔂		ant?	k ₩ ∞ 🗉	l-∈ ••y • ⊠	aster View 👻	🖪 🛰 🔺 100	5 ÷		
21	006 20	107 2	800	2009	2010		2012	2013		1014	
08									V	Ungest inge	Unes h
-								Blank		-	
nbustion techn		Variable value	timing for	diesel			V No cold sta	reclution			Zero
	-			V 0	ea widely availabi	e as emission	s-reducing ape	tot		1	∇
							Full diese	HCCI with his	N BMEP	_	v
0.0	GDI engines		_					Ultra	high pres	sure dies el	injec
supply					Flexib	le diesel fuel in	lection syste	ms			
aust treatment		Particulate traps	and treatr	nent						New brea	kthroug
	Die	sel NOx catals	tic traps		_				∇	After-treat	ment (
	\ \ Optimis	ed after-treatme	nt V i	Fraps on si	ome construction	machinery			1.1	2	7 тга
						Lov	v cost high dura	billy particula	te traos		
					After tre	atment model	lling tools				
gn, modelling a						Advanced con	nbustion mode	elling tools			
er	alternator mild h	brid systems	on conver	tional en	gines						
ine design		Engine recycla	bility		Self-	diagnosis					
					Off-road veh	icle engines m	atch automoti	ve emission s	tandards		
			Feedbac	ik control of	combined engi	ne and powe	artrain	Er	misšions (control for P	M size
ine manageme							Combustio	n sensors and fe	edback	control	
									1		1
ants					Developr	nent of zero as	sh lubricants				
• •			-								
search 🗾 Feas	ibility Research	Proof of Con	cept 🗾 S	ubaystem Va	ilidation (Lab)	Subsystem Val	idation (Erw)	Subayatem Pro	totype	System P	hototype
				Confid	estial Proprietary						
M Alwis -	Maro Dala	oode - Mar	Marrisol	100	Writer Strater	L Co	odl z a			0360	0.0
	1 60 -				- noise subley.	- GU	ION II	2 P 0 1			

Knowledge Transfer Network

Conclusions

- All vehicles will ultimately incorporate low carbon technologies but shift will be disruptive to motor industry in the UK
- Threats and opportunities recognised as justification for a Centre of Excellence
 - Stakeholder engagement focused value-add not on R&D but for active hands-on support for sector leaders in critical exploitation phase
- Cenex seeking to leverage both supply and demand-side investment through supplier-led technology demonstrations and customer-led innovation orientated procurement (IOP)
 - Projects underway for electric and fuel cell vehicles and under development for hybrids and vehicles running on biogas
- Approach of Cenex now supported by policy developments of Low Carbon Transport Innovation Strategy (Innovation Platform and Public Procurement Programme
- Desired outcome is pump primed UK-based supply chain developing innovative low carbon technologies to showcase to the global motor industry via early demonstration and adoption by fleets motivated to cut carbon

Thank you for your attention

www.cenex.co.uk

www.lowcarbonfuelcellktn.org.uk

Low Carbon and Fuel Cell Technology

Knowledge Transfer Network